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Abstract

For large linear heat conduction systems, it is proposed here to solve an inverse heat conduction problem (IHCP)

that consists in the identi®cation of several time-varying thermal solicitations from simulations of measured tem-

peratures. For this inversion, instead of using a detailed model of large size, this one is ®rst transformed into a reduced

model. The latter is built with identi®ed dominant eigenmodes of the system leading to a reduced state representation

that links the inputs (unknown solicitations) to the outputs (simulated temperatures). The procedure is sequential and

uses future time steps. At ®rst, a numerical 2D IHCP is provided: two time-varying heat ¯ux densities are estimated

from various positions of two sensors. A speci®c study on static and dynamic sensitivities is made. An example of a 3D

IHCP is also given. The method is particularly interesting in this last case where, at each time step, the resolution of a

system of order 9 (the reduced model) takes the place of a system of order 1331 (the detailed model). Ó 2001 Elsevier

Science Ltd. All rights reserved.

1. Introduction

Among the several types of inverse heat conduction

problems (IHCP), we are interested here in the identi®-

cation of unknown boundary conditions varying in time

from the knowledge of temperature evolutions at some

points of the domain. Numerous works concerning this

mathematically ill-posed problem have already been

carried out. In a non-exhaustive manner, we shall

underline BeckÕs contribution [1±3,6] which takes into

account the lagging and damping e�ects due to the dif-

fusion process by using a sequential method associated

to a function speci®cation procedure. This technique

acts as an e�cient regularization procedure, as it will be

shown in this paper. Other kinds of regularization

techniques are also very often used in IHCPs as, for

example, TikhonovÕs method [2,3,6] and the iterative

regularization [4,5]. According to the geometry, we can

point out:

· in 1D problems: the space-marching scheme [7], a re-

cursive least squares algorithm [8], the use of Kal-

manÕs smoothing technique [9],

· in 2D: another KalmanÕs approach [10], the combina-

tion of TikhonovÕs regularization with boundary

element method (BEM) [11±13], and with the func-

tion speci®cation method in a non-linear case [6],

· in 3D: a theoretical paper using the adjoint equation

approach coupled to the conjugated gradient is pro-

posed [14]. For a stationary case, the identi®cation

of a ®eld of heat transfer coe�cients is given [15].

All these IHCPs involve temperature measurements

(real or simulated) associated with a mathematical rep-

resentation. Except for very special cases where the

model is analytical, as soon as the geometry, or the

boundary conditions become complicated, it is then

necessary to use a model leaning on a spatial discret-

ization of the domain (®nite elements, control volume

method, boundary element method, . . .). These methods

can lead to a system of N di�erential equations as follows:

Ca
_T �t� � KT �t� �W�t�; �1�

where t is the time, T (dim N) the vector of the N tem-

peratures at the grid nodes and _T is its derivative with
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respect to time. The matrices Ca (heat capacity) and K
(thermal conductance) are constant for a linear problem.

This physical model will be called a detailed model

(DM). If such a DM is satisfactory in the direct simu-

lation (computation of the temperature ®eld, when

knowing the heat sources and boundary conditions in-

cluded in W), it becomes much harder for IHCP: the

number N of the nodes of the discretization is usually

large compared to the number of sensors q (q� N ).

These sensor temperatures represent only a part of

vector T written as

Y �t� � CT �t�; �2�
where C (dim. q,N) is a selecting matrix.

So, instead of using such a DM to invert, i.e., to

identify the heat solicitations included in W from the

knowledge of Y(t), it is proposed here to use a reduced

model (RM) which is low dimensioned and which con-

nects the inputs to the observed outputs through a small-

dimensioned state representation based on dominant

eigenmodes of the system: the assumptions of linearity

and invariance are then necessary [16].

Coming from automatics [17,18], reduction methods

have been applied and developed in thermal sciences

[19,20]. Instead of using Eqs. (1) and (2), the state-space

representation is used for model reduction. It is written as:

_T �t� � AT �t� � BU�t�; �3a�

Y �t� � CT �t�; �3b�
where T (dim. N) is the state vector, A, B, C are re-

spectively the state, input and output matrices such as:

A � Cÿ1
a K; �4�

Cÿ1
a W�t� � BU�t�: �5�

Nomenclature

A�N ;N� state space matrix for DM

B�N ; p� command matrix for DM

C�q;N� output matrix

C�q��nf � 1�; np� macro matrix

f �m;m� diagonal matrix relative to

current ERM [sÿ1]

F�N ;N� �or �n; n�� diagonal matrix of eigenvalues

for DM [or RM] [sÿ1]

g�m� vector applying _u
G�N ; p� �or �n; p�� input (or command) matrix for

DM [or RM]

h�q;m� output matrix relative to current

ERM

H�q;N� �or �q; n�� output (or observation) matrix

for DM [or RM]

k thermal conductivity

[W mÿ1 °Cÿ1]

m order of current ERM

n order of RM (n �Pm)

N order of DM

nf number of future times for

speci®cation function

nt number of time steps for

simulation

p dimension of input vector

q dimension of output vector

s(q) static vector relative to current

ERM

S�q; p� static matrix, static sensitivity

matrix

Si;j static sensitivity of sensor n°i

relatively to input n°j

Sd�q; p� dynamic sensitivity matrix

Sdi;j dynamic sensitivity of sensor n°i

relatively to input n°j

T ; _T �N� temperature vector, its derivative

u; _u current component of U, its

derivative

U ; _U�p� input vector, its derivative

x; _x�m� ERM state vector, its derivative

X ; _X �N� �or �n�� state vector in modal form, its

derivative for DM [or RM]

y(q) ERM output vector

Y(q) output vector for DM [or RM]

Ym(q) output vector of simulated

measurements

Y�q��nf � 1�� macro output vector

Abbreviations

DM detailed model

ERM elementary reduced model

FTS future time step

RM reduced mode

Greek symbols

Dt time step [s]

q density [kg mÿ3]

r standard deviation of the

measured temperatures [°C]

rU root mean square for U [W mÿ2]

rY root mean square for Y [°C]

s time constant [s]

u heat ¯ux density [W mÿ2]

w(N) vector of thermal excitations

x random variable

Superscripts

^ estimated value
T transposition sign
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For model reduction, the aim is then to compute an-

other state-space representation with a very low-

dimensional state vector X(t) compared to the initial one

T(t) and that gives a very good approximation of the

output vector Y(t). The originality of the present work

will consist in the use of such a model to invert.

Many of these reduction techniques lean on a selec-

tion of eigenmodes of the state matrix A of Eq. (3a)

[17±20]. Whereas these methods require a matrix diag-

onalization ± that can be heavy to handle if the system is

large ± as far as we are concerned, we have developed a

reduction method leaning on the identi®cation of a few

representative eigenvalues [21±23].

This paper includes several parts. At ®rst, our speci®c

reduction method is recalled. The inverse method is then

developed through the time discretization and the use of

future time steps as a regularization procedure. An ap-

plication on a 2D di�usive system is then shown. A 3D

extension completes the study.

2. Reduction method

Our reduction method (RM), using another state-

space representation than Eqs. (3a) and (3b) is recalled

here. It takes into account the derivative of the input

vector with respect to time.

2.1. Transformation of the state-space equations of DM

Consider a constant input vector Ucst: From Eq. (3a),

the corresponding state vector Tcst is then

Tcst � ÿAÿ1BUcst: �6�
This would suggest the introduction of a new state

vector T 0 with the following change of variable:

T �t� � T 0�t� ÿ Aÿ1BU�t�: �7�

Eqs. (3a) and (3b) then become

_T 0�t� � AT 0�t� � Aÿ1B _U�t�; �8a�

Y �t� � CT 0�t� � SU�t� �8b�
with _U�t� the derivative with respect to time of the input

vector U and S is called the static matrix and is de®ned

by

S � ÿCAÿ1B: �9�

Now, if we use the Jordan transformation to obtain a

modal representation then Eqs. (8a) and (8b) become:

_X �t� � FX �t� � G _U�t�; �10a�

Y �t� � HX �t� � SU�t�; �10b�

where X is the new state vector in the modal base, F the

diagonal matrix of eigenvalues, G and H the new input

and output matrices i.e.:

X �Mÿ1T 0; G �Mÿ1Aÿ1B; H � CM ;

F �Mÿ1AM � diag�Fi�; �11�
and M is the matrix constituted by eigenvectors (modal

matrix).

This formulation allows the decoupling of state

variables and consequently makes numerical integration

easier. This formulation also gives information about

the time constants si of the system since eigenvalues fi

are

real part of �Fi� � ÿ1=si: �12�
In the case of di�usive heat transfer, we are interested in

all the eigenvalues are real negative.

Remark. Note that these changes of variable are made

on a detailed state-space model of order N on Eqs. (8a)

and (8b). These developments are only made to intro-

duce the structure of Eqs. (10a) and (10b) that will be

used for the reduced model of order n. In the following

paragraphs, we will not use this representation for the

detailed model: Eqs. (3a) and (3b) will be kept.

2.2. Structure of reduced model

The important assumption here is that Eqs. (10a) and

(10b) will be considered here as a form for our RM that

will be therefore written as:

_XR�t� � FRXR�t� � GR
_U�t�; �13a�

Ŷ � HRXR�t� � SRU�t�; �13b�

where XR is the new state vector of low dimension n

(n� N ), relatively to the diagonal matrix FR which

contains the n dominant eigenmodes of the system. Ŷ �t�
is the corresponding output vector such as Ŷ �t� � Y �t�
for any U(t). GR, SR and HR are the equivalent new

reduced matrices. In our case, the contribution of

SRU(t) in Ŷ �t� is the same as the contribution of SU(t) in

Y �t� of Eq. (10b), so SR � S. This enables us to keep any

stationary states between DM and RM: the reduction

will take place only on the dynamical part.

The reduction operation here consists in the fact that

the di�erential system represented by Eq. (13a): (i) is low

ordered; and (ii) is much easier to compute than Eq. (3a)

because the variables are uncoupled (FR is diagonal).

The principle of model reduction is shown in Fig. 1. This

RM will be then more convenient for the inversion.

In the following paragraphs, in order to lighten

the notations, RM will be noted in the same way as

Eqs. (10a) and (10b):
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_X �t� � FX �t� � G _U�t�; �14a�

Y �t� � HX �t� � SU�t�: �14b�
Note that several inputs are included in U(t). In order to

set up the RM Eqs. (14a) and (14b), several elementary

reduced models, built on each component of U are used.

2.3. Elementary reduced model (ERM)

As the assumption of linearity is made, the super-

position principle will be applied. In fact, RM is con-

structed with as many ERMs as components of U: each

component Ui(t) is associated to an ERM. Let u�t� �
Ui�t� �16 i6 p� be the current component of U. Each

ERM has a similar structure as Eqs. (14a) and (14b) and

can be written as:

_x � f x�t� � g _u�t�; �15a�

y�t� � hx�t� � su�t�; �15b�
where x (dim. m) is a new state vector relatively to u,

with its eigenvalues included in f. The output vector y

represents the contribution of the u(t) e�ect in the ®nal

output vector Y(t) of Eq. (14b).

The static vector s is simply the ith column of the

static matrix S, the stationary is the same in DM and

RM (cf. Section 2.2). In practice, this vector is obtained

by a simulation of a stationary state with DM: if u � 1 is

applied to DM and if ystat is the corresponding output,

Eqs. (15a) and (15b) lead to:

s � ystat:

In earlier works [22,23], it has been demonstrated that

all the di�erent matrices in Eqs. (15a) and (15b), as well

as the order m, can be obtained with an identi®cation

procedure that consists in the minimization of a

quadratic criterion relative to the di�erence between the

simulated outputs of DM and the analytical outputs of

ERM when a unit step is applied on each model. For a

given order m, this criterion Jred is written as

Jred�f ; g; h� �
Xq

i�1

Xnt

k�1

�yik�DM� ÿ yik�ERM��2 �16�

where nt is the number of time steps contained in the q

outputs. Conjugated gradients and least square method

are used for this optimization problem. The method is

iterative with the order m which is increased until that

Jred�m� 1� � Jred�m� and the corresponding optimal

values of f, h, and g are then kept for ERM.

2.4. RM reconstitution and its time discretization

When all the p ERMs are identi®ed, with the super-

position principle, the matrices of the complete RM

(Eqs. (14a) and (14b)) then have the following form:

;

�17�
where x, f, g, h and s are the current elements coming

from Eqs. (15a) and (15b). The RM order will then be

n �Pm, m being the current dimension of ERM rela-

tively to u.

Fig. 1. The principle of model reduction for a state representation.
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The main advantage of this representation is that

each input acts with its own dynamics in relation to the

output vector. Consequently, the inputs have uncoupled

in¯uences. This property will allow the inversion pro-

cedure.

By assuming that U�t� � U�k � 1� constant between

kDt and �k � 1�Dt, the time discretization of Eq. (14a)

gives (see Appendix A)

X �k � 1� � exp�FDt�fX �k� � G�U�k � 1� ÿ U�k��g:
�18�

It ensues a linear relation between the output vector

Y �k � 1� and the input vector U�k � 1�
Y �k � 1� � �H exp�FDt�G � S�U�k � 1�

�H exp�FDt��X �k� ÿ GU�k��: �19�
Eq. (19) enables then the computation of the output

vector Y for each time step, when U(k) is known (for-

ward problem).

Remark. Let us underline the parallel with DuhamelÕs
theorem [4] that needs the responses of unit step solici-

tations on the boundary in order to calculate a con-

volution integral. The main di�erences are here: (i) the

whole temperature ®eld is not calculated here, (ii) the

past of the system at time t is summarized in a low-

dimensional state vector X(t) and the convolution is

then avoided as it is shown in Eq. (19).

3. Inverse algorithm

3.1. Function speci®cation method

In order to invert, RM will be used. The procedure is

sequential: determination of the input vectors:

U�1�;U�2�; . . . ;U�k�;U�k � 1�; . . . ;U�kend� from the

output vectors: Ym�1�; Ym�2�; . . . ; Ym�k�; Ym�k � 1�; . . . ;
Ym�kend) that represent the measurements. Knowing the

input vector U(k) at the time step k, the aim is to identify

the vector U�k � 1� from the temperatures included in

Ym�k � 1�. In order to take into account the lagging and

damping e�ects of the di�usion e�ect, it can be necessary

to obtain information using future time steps (FTS) [2].

A function speci®cation is traditionally introduced: a

temporary assumption is made on the additional un-

knowns: U�k � 1� 1�; . . . ;U�k � 1� nf�, where nf is

the number of FTS. We choose here

U�k � 1� i� � U�k � 1� � constant

for 16 i6nf : �20�
According to Eq. (19), the relations between the output

and input vectors at k � 1 for all FTS (i being the cur-

rent one) can be written as:

Y �k � 1� � C0U�k � 1� � b0;

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Y �k � 1� i� � C iU�k � 1� � bi for 06 i6nf

�21�

with

C i � H exp ��i� 1�FDt�G � S for 06 i6 nf �22�
and

bi � H exp ��i� 1�FDt��X �k� ÿ GU�k�� �23�
The �nf � 1� Eq. (21) can be written under a macro

vector form

Y � CU�k � 1� � b �24�
with

C �

C0

C1

� � �
C i

� � �
Cnf

26666664

37777775 b �

b0

b1

� � �
b1

� � �
bnf

26666664

37777775

Y �

Y �k � 1�
Y �k � 1� 1�

� � �
Y �K � 1� i�

� � �
Y �K � 1� nf�

26666664

37777775:
�25�

Eq. (24) is then a system of �nf � 1� � q equations which

are the components of Y, with p unknowns which are

the components of U�k � 1�. Note that there are more

temperatures than unknowns because: (i) there are at

least as many sensors as unknowns (q P p); and (ii) fu-

ture temperatures are used. In order to use now the

vector of measurements Ym, the minimization of a

quadratic norm of Yÿ Ym (least square method) leads

to the resolution of the squared system:

CTCÛ�k � 1� � CT�Ym ÿ b� �26�
whose solution is:

Û�k � 1� � �CTC�ÿ1CT�Ym ÿ b�: �27�

Remark. (i) The ill-posed feature of the inverse problem

appears in the di�culty of solving Eq. (26), i.e., the

condition number of matrix CTC is large. The condition

number can be taken as the ratio of the greatest eigen-

value of CTC to the smallest one. Nearer this number is

close to one, better is the conditioning.

(ii) The addition of future time steps is a regulariza-

tion procedure which acts directly on the matrix to in-

vert: it decreases the condition number of matrix CTC.

(iii) The past of the system is represented in vector b
which is calculated with the previous input vectors
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Û�1�; Û�2�; . . . ; Û�k�. Compared to a classical transfer

function method, this approach allows the non-handling

of the time discretization of the transfer function.

(iv) It is also possible to use TikhonovÕs penalization

[4,5] to regularize Eq. (26). Such an approach has not

been necessary here for the inversion with RM.

3.2. Sensitivity coe�cients

In order to analyze the possibility to invert with RM,

we present here a sensitivity approach based on two

concepts: the static and the dynamic sensitivity matrices.

Let us underline that our RM is particularly well

adapted to point out the sensitivities. First, consider the

static matrix S written in Eqs. (14a) and (14b). This one

can be considered as a sensitivity matrix, in fact, in

stationary cases, each element Sij can be written as:

Si;j � DYi

DUj

for DUj 6� 0 and DUk � 0 for k 6� j:

�28�
If two columns of this matrix are quasi proportional, the

sensitivities are too correlated and the static inversion is

not possible. In order to invert in the transient case, it is

also necessary to evaluate the sensitivities in a dynamic

way. This is the reason why we introduce the dynamic

sensitivity matrix, which is linked to the time step. This

matrix Sd�Ds� is de®ned from Eq. (22) with i � 0:

Sd�Dt� � C 0 � H exp �FDt�G � S �29�

and represents the evolution of the static matrix after

one time step. When Dt tends toward zero, Sd tends

toward the null matrix, this formulation shows that S is

an upper limit for Sd: the static sensitivities will always

be greater than the dynamic ones. So it can be seen that

if Dt is too low for the system, Sd is near 0: the dynamic

sensitivities are too weak and the inversion is delicate.

When Dt becomes greater, matrix S contribution be-

comes heavier and the sensitivity coe�cients are better.

So, in order to strengthen these coe�cients, two possi-

bilities can be envisaged: (i) the increase of Dt, (ii) the use

of nf future time steps through matrices de®ned by

Eq. (22). Of course, when Dt or nf increases, the con-

dition number of matrix CTC of Eq. (22) is modi®ed.

4. Applications

4.1. Description of the 2D system and aim of the study

The system under investigation is a square slab

ABCD (AB � 0:1 m) composed of stainless steel (k � 16

W mÿ1°Cÿ1, CP � 510 J kgÿ1°Cÿ1, q � 7900 kg mÿ3).

Fig. 2 shows the geometry with its boundary conditions:

two heat ¯ux densities u1(t) on AD, u2(t) on AB and

two convective boundary conditions relative to a ¯uid

temperature Tf � 0°C (h � 100 W mÿ2 °Cÿ1on BC and

h � 10 W mÿ2 °Cÿ1on CD).

At ®rst, in order to obtain a detailed model under the

form (Eqs. (3a) and (3b)), the domain is modeled with a

classical control volume method with a regular mesh

�11� 11�. The temperatures on the 121 nodes represent

the temperature ®eld whose values constitute the com-

ponents of vector T (Eqs. (3a) and (3b)). The two heat

¯ux densities u1(t) and u2(t) are set in the output vector

U(t) (p � 2). In the output vector, Y(t) are set the node

temperatures on two points (q � 2) among the 121.

These two points represent two sensors: one located

along the side BC and the other on side CD.

Now the stages are the following: ®rst, we present a

study of sensitivities based on an RM built on the two

sensors in the current position (Fig. 2). Then, an ex-

ample of reduction is shown. Finally, for the inversion,

three di�erent positions of the two sensors are studied in

an increasing di�culty with their own RM: position 1,

i.e., close to the thermal solicitations, position 2 in the

middle of the sides, and position 3, the farthest away

from the solicitations.

4.2. Sensitivity study

4.2.1. Static sensitivities

According to the study presented in Section 3.2, we

present the static sensitivities when the sensors (Fig. 2)

are moved simultaneously (n � g) respectively on CD

(Fig. 3) and on BC (Fig. 4). It can be noted that:

· Globally, both sensors are sensitive to both inputs.

· The level of sensitivity gives interesting information

relative to the level of the heat ¯ux density that can

Fig. 2. The 2D di�usive system with the three studied positions

of sensors and the current one.
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be identi®ed. For example, if the sensitivity is 0.01

m2 Wÿ1 °C, with a sensor which has a precision under

1°C, an identi®cation less than 100 W mÿ2 will be im-

possible.

· The ®rst sensor (on CD, Fig. 3) is always more sensi-

tive to u1 than to u2 �S11 > S12�.
· Even in position 1 (the most uncoupled and the eas-

iest position), S12 is as important as S22, and S12 re-

mains higher than S22 when the sensors move away

from position 1. Such an analysis is not possible

when considering only the system intuitively with

Fig. 2. This is due to the thermal asymmetry coming

from the di�erent boundary conditions along the

sides DC (h � 10 W mÿ2 °Cÿ1) and BC (h � 100

W mÿ2 °Cÿ1).

· For the same reason, at the middle of BC (position

2), S22 becomes lower than S21 when g increases

(Fig. 4). Taking into account, the geometry of the

system and its boundary conditions, we see then, that

the static sensitivities to u1 dominate the u2 ones.

4.2.2. Dynamic sensitivity

Now let us analyze the dynamic sensitivities given by

Eq. (23). Firstly, let us consider the sensitivities when no

FTS are used (nf � 0). They are represented in Fig. 5 for

the ®rst sensor on CD (the 2nd sensor is not presented as

Fig. 3. Static sensitivities vs. n (along DC).

Fig. 4. Static sensitivities vs. g (along BC).
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the sensitivities are quite similar). Of course, as it has

been demonstrated in Section 3, these sensitivities are

lower than the static ones and depend on the time step,

which is used. In Fig. 5, we can see the e�ect of adding

FTS: it appears clearly that the dynamic sensitivities

signi®cantly increase when FTS are used. This e�ect is

especially visible when nf increases from 0 to 1. The

dynamic sensitivity of the points far from the excitations

(position 3) is multiplied by a factor greater than 100.

On the contrary, for the sensors close to the excitations

(Sd11 on the left), the addition of FTS has almost no

in¯uence.

4.2.3. Decoupling

In order to invert, of course the sensitivities must be

su�cient, but as there are two unknowns, the sensitivi-

ties must not be correlated. The correlation can be ap-

preciated with the determinants:

det�S� � S11 S12

S21 S22

���� ���� and det�Sd� � Sd11 Sd12

Sd21 Sd22

���� ����;
respectively for the static and dynamic sensitivities.

These values must be as great as possible. They are

given in Table 1 for the three positions. They decrease

with the distance from the heat ¯ux densities. In this

case, the optimum location of the sensors is of course

position 1 because the dynamic sensitivities and the de-

terminants are the greatest.

In a general way, whatever the sensitivities may be, it

is essential to study the decoupling between the sensors.

Of course, the most favorable case is when a sensor has a

large sensitivity to one excitation and a small one to the

other excitation and vice versa. It is then foreseeable that

the inversion results will become less satisfactory when

the sensors approach point C.

4.3. Construction and validation of RM

From the current position, an RM is built according

to Section 2. As an example, we show here the results

corresponding to position 2. On each input, ERM is

identi®ed. As an illustration, the dominant eigenvalues

expressed as time constants si and the quadratic cri-

terion Jred (Eq. (16)) for both ERMs at di�erent orders

are shown in Table 2.

Comments:

· Of course, the criterion Jred decreases when the order

m increases (strongly between m � 2 and 3): the

lower this criterion, the better the ERM.

· The main time constants are found for m � 3 in both

ERMs (si � 4288 s), and the others, a little di�erent,

allow the simulation of faster dynamics.

· Even if two identical (or quasi) time constants appear

in both ERMs, their in¯uences are nevertheless sep-

arated through the entire reduced model given by

Eqs. (14a), (14b) and (17). For example, it can be

Table 1

Determinants of static and dynamic matrices according to the position of both sensors

Position 1 2 3

det(S) 5:65� 10ÿ5 1:27� 10ÿ5 7:28� 10ÿ7

det(Sd) 5:25� 10ÿ7 7:25� 10ÿ12 3:38� 10ÿ15

Fig. 5. Dynamic sensitivities vs. n (along DC) for nf � 0, 1 and 2 with Dt � 50 s.
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seen in Table 2 for m � 4 that, on each input, the

main time constant (4288 s) has been identi®ed: con-

sequently this value appear twice (in matrices f1 and

in f2) but is treated di�erently through matrices h1

and in h2 and vectors g1 and g2 of Eq. (17). This last

formulation is then quite di�erent of the similar one

(Eq. (11)) corresponding to the diagonalization of

the state-space matrix of DM, where the eigenvalues

are usually very di�erent.

When both ERMs are identi®ed, the ®nal RM is built

(Eq. (17)). Before using it for the inversion, we propose

here a validation: a comparison between RM and DM

temperature evolutions in position 2 for a same input set

(the inputs that will be used after for inversion and that

are represented in Fig. 8). These direct simulations are

made with a time step Dt � 50 s, so we choose m � 3 for

each ERM: in fact, time constants smaller than 10 s are

not representative enough for such Dt (cf. Table 2). For

example, Fig. 6 shows two responses (middle of BC)

which seem equivalent: the temperature di�erence must

be multiplied by 100 to be visible on the graph. There-

fore, RM gives very accurate responses and can be used

for inversion.

4.4. Inversion results

In this part, positions 1, 2 and 3 will be used for the

inversion. Each of these positions is represented by RM

with Eqs. (14a) and (14b). The temperature evolutions of

the sensors are computed with DM (Eqs. (3a) and (3b))

and RM is used for the inverse procedure. Knowing the

true applied heat ¯ux densities, the quality of the

inversion results will be given by:

rU � 1

�ntÿ 1ÿ nf� � p

"

�
Xp

i�1

X�ntÿ1ÿnf�

k�1

Ui�k�
�

ÿ Ûi�K�
�2

#1=2

; �30�

where U is the exact input vector, Û the identi®ed one

and nt is the number of time steps that are used. Simi-

larly, a measure of the di�erence between the original

temperatures included in Y (the simulated data with

DM) and the computed ones included in Ŷ (calculated

with the identi®ed inputs) can be written:

rY � 1

�ntÿ 1ÿ nf� � q

"

�
Xq

i�1

X�ntÿ1ÿnf�

k�1

Yi�k�
�

ÿ Ŷi�k�
�2

#1=2

: �31�

It gives an estimated standard deviation of the temper-

atures. Of course, in real applications, rY is the only

value that can be reached. rU is given here as supple-

mentary information.

Furthermore, to simulate measurement errors, each

temperature included in Y is altered with an additive

Gaussian error. A simulated noisy data T� can then be

expressed as

T � � Texact � xr; �32�
where r is the standard deviation of the measurement

errors which are supposed to be the same for all

Fig. 6. Comparison of DM (order 121) and RM (order 6)

temperature evolutions for the same inputs. Position 2. Dt �
50 s.

Table 2

Time constants and quadratic criterion for each ERM in position 2

ERM order

2 3 4

Input 1 Time constants si (s) 4266 4288 4288

u1�u1 267 227 228

83 76

9

Jred (°C2) 0:128� 10ÿ6 0:589� 10ÿ9 0:161� 10ÿ9

Input 2 Time constants si (s) 4263 4288 4288

u2 � u2 296 240 242

82 74

8

Jred (°C2) 0:114� 10ÿ6 0:556� 109 0:191� 109
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measurements and x is a random Gaussian variable

such as ÿ2:576 < x < 2:576 that corresponds to the

99% con®dence bounds for the temperature measure-

ment. For all test cases analyzed here, we consider

r � 0°C (errorless measurements), r � 0.1°C and

r � 0.2°C (noisy data).

As an example of results, let us consider position 2.

From the temperatures altered with an additive noise

(r � 0.1°C), represented in Fig. 7, we present the results

of the inversion in Fig. 8 as well as the exact values. The

results are quite satisfying (rY � 0.104°C and rU � 611

W mÿ2). Thanks to RM composed of two ERMs, the

contribution of each input to the sensor temperature

could be restored, although the solicitations vary in a

very di�erent manner (Fig. 8). Note that the in¯uence of

these evolutions is smoothed when considering the

evolutions of temperature (Fig. 7).

All the inversion results are summarized in Table 3

for the three di�erent positions.

Comments:

(a) Errorless measurements: When no measurement

error is added to the simulated temperatures, for pos-

ition 1, no future time step is needed (nf � 0) and rY is

very low (1.8 ´ 10ÿ14 °C). However, the value of rU (408

W mÿ2) is penalized when the solicitations vary suddenly

vs. time. It is nevertheless acceptable compared to the

level of these solicitations. It represents the best value

that can be obtained.

For positions 2 and 3, rY and rU increase, as well as

the number of FTS. Nevertheless, the identi®cations can

be considered as good. Note that the optimum number

of FTS is obtained when rY is minimum.

(b) Noisy data: Now, to check the e�ciency and ac-

curacy of the algorithm, the e�ect of measurement errors

is studied. When there are measurement errors, nf has to

be increased until rY � r. This corresponds to a regu-

larization procedure. Of course, the problem becomes

more di�cult. Table 3 shows that the estimations of u1

and u2 become less good when the measurement error

increases. For position 3 (where the lagging and

damping e�ects are very important) and with a noise

level equal to r � 0.2°C, the identi®cation of u1 and u2

is not physically acceptable.

(c) E�ect of the number of future time steps on the

condition number: As an example, for position 2, the

condition number (CN) of matrix CTC (Eq. (26)) is

given in Table 4.

For errorless measurements, it can be seen how CN

decreases abruptly between nf � 0 and nf � 1. More-

over, it corresponds to the best CN compared to the

other cases, and the inversion is correct.

When r � 0.1°C, it has been necessary to use nf � 4

to invert, i.e., to obtain worthy results. Nevertheless, the

Fig. 7. Temperature evolutions in position 2 (r � 0.1°C).

Dt � 50 s.

Fig. 8. Identi®cation of u1 and u2 from two sensors in position

2 with r � 0.1°C and nf � 4.

Table 3

E�ect of the standard deviation for the three positions

r (°C) 0 0.1 0.2

Position 1 rY 1:8� 1014 1:9� 1014 2:0� 1014

rU 408 408 430

nf 0 0 0

Position 2 rY 2:05� 103 0.104 0.244

rU 453 611 725

nf 1 4 6

Position 3 rY 1:10� 103 0.112

rU 500 1400

nf 2 7
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correspondent CN is acceptable (1.67) and the value of

rY (0.104°C) is just over the noise standard deviation

(r � 0.1°C, cf. Table 3). This is in accordance with

classical studies on inverse results from noisy data [4,5]

where the estimated standard deviation of the tempera-

tures corresponds to the noise.

4.5. A 3D application

We propose here a 3D application by simply adding a

third dimension to the previous system. A cube of

stainless steel is then studied with a third heat ¯ux

density u3. A third boundary condition, with h � 50

W mÿ2 °Cÿ1 relatively to 0°C, is assumed on the opposite

face. The corresponding DM, established with control

volumes (order 1331 � 11� 11� 11), is computed with

Eqs. (3a) and (3b). In the output vector are set three

temperatures that simulate three sensors set in the

middle of opposite faces (analogy of position 2 in the 2D

case). As the input vector is made with 3 heat ¯ux

densities (u1, u2, u3), three ERM are identi®ed and the

corresponding RM is here of order m � 9 (order 3 for

each ERM).

The three simulated measurements to invert are

presented in Fig. 9. From these values and with an

added noise (r � 0.1°C), we present the results of the

inversion with the original inputs in Figs. 10±12. The use

of nf � 4 has been necessary here. When seeing the three

smooth temperature evolutions (Fig. 9), the quality of

these results must be underlined. Moreover, it has been

computed with a model of order nine instead of the

original one of order 1331.

4.6. Computer time

Besides the possibility to easily invert 3D IHCPs, an

important advantage of RM consists in the quickness of

the computations. In fact, on the one hand, the CPU

time is low due to RM dimension. On the other hand,

the modal representation decreases the computational

Table 4

In¯uence of the number of FTS nf on the condition number

(CN)

nf 0 1 2 3 4

CN 29.7 1.23 1.24 1.40 1.67

Fig. 9. Simulated measurements.

Fig. 10. Identi®cation of u1 with r � 0.1°C and nf � 4.

Dt � 50 s.

Fig. 11. Identi®cation of u2 with r � 0.1°C and nf � 4.

Dt � 50 s.

Fig. 12. Identi®cation of u3 with r � 0.1°C and nf � 4.

Dt � 50 s.
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time because of the uncoupling of the state variables: the

reduced matrix F of Eq. (14a) is diagonal, which reduces

the number of operations. For instance, when solving

the 3-D IHCP, the CPU time was about 3� 10ÿ3 s per

time step (on a work station): this advantage can be used

e�ciently, particularly with the aim of controlling a

process in real time. Of course, the main computation

e�ort has been made before, for the building of the

di�erent ERMs [22,23], but this is made once and for all.

5. Conclusion

In this paper, the use of a reduced model for the

solution of IHCP is introduced. The method includes the

regularization with the function speci®cation technique

and gives accurate results. In fact, RM underlines di-

rectly and separately the contribution of each thermal

input to the observed outputs. A deconvolution of the

temperatures is then possible. On a 2D example, whose

reduction ratio was 121 (DM)/6 (RM), the di�erent

positions of the sensors are analyzed by the study of the

static and dynamic sensitivities: these last ones show the

in¯uence of the time step and the number of future time

steps. Good results are obtained as well as in a 3D ap-

plication whose reduction ratio is much more interesting

with 1331 (DM)/9 (RM).

Let us point out that the proposed method is par-

ticularly robust in multidimensional IHCPs: RM does

not ``see'' the 2D or 3D aspect of the phenomena. In

fact, the resolution is made only on the sensor locations:

RM links the inputs and outputs through the reduced

modal formulation. Moreover, the method is computa-

tionally e�cient: an interesting application of IHCP

using RM is the possibility to include it in a control-

command process in real time.

At present, the continuation of this work consists in

its application to experimental situations with real

measurements.

Appendix A

It is shown that the analytical solution of the state

equation:

_X �t� � FX �t� � G _U�t� �A:1�
is given by:

X �t� � eF�tÿt0�X �t0� �
Z t

t0

eF�tÿs�G _U�s� ds:

We use this analytical solution between k � Dt and

�k � 1� � Dt:

X �k � 1� � eFDtX �k� �
Z �k�1�Dt

kDt
eF��k�1�Dtÿs�G _U�s� ds

X �k � 1� � eFDtX �k� � eF�k�1�Dt

Z �k�1�Dt

kDt
eÿFsG _U�s� ds

By integrating the second term by parts

X �k � 1� � eFDtX �k� � eF�k�1�Dt eÿFsGU�s�� ��k�1�Dt

kDt

�
� F

Z �k�1�Dt

kDt
eÿFsGU�s� ds

�
� eFDtX �k� � eF�k�1�Dt eÿF�k�1�DtGU�k�� � 1�

ÿ eÿFkDtGU�k��� F

Z �k�1�Dt

kDt
eÿFsGU�s� ds

�
:

By writing that U�s� � U�k � 1� between time steps

k � Dt and �k � 1� � Dt, we obtain

X �k � 1� � eF DtX �k� � eF �k�1�Dt

eÿF �k�1�DtGU�k�� � 1� ÿ eÿFkDtGU�k��
� FGU�k � 1�

Z �k�1�Dt

kDt
eÿFv dv

�
� eF DtX �k� � eF �k�1�Dt eÿF �k�1�DtGU�K�j � 1�
ÿ eÿFkDtGU�k��ÿGU�k � 1� eÿF s

� ��K�1�Dt

kDt

k
� eF DtX �k� � eF �k�1�Dt eÿF �k�1�DtGU�k�j � 1�
ÿ eÿFkDtGU�k��ÿGU�k � 1� eÿF �k�1�Dt

� ÿ eÿFkDt
�k

� eF DtX �k� � GU�k� � 1� ÿ eF DtGU�k��
ÿGU�k � 1� 1

� ÿ eF Dt
�
:

Finally, the time discretization of Eq. (A.1) is then

X �k � 1� � eFDtX �k� � eFDtG U�k� � 1� ÿ U�k��:
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